Stochastic Training of Neural Networks via Successive Convex Approximations
نویسندگان
چکیده
This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The basic idea is to iteratively replace the original (non-convex, highly dimensional) learning problem with a sequence of (strongly convex) approximations, which are both accurate and simple to optimize. Differently from similar ideas (e.g., quasi-Newton algorithms), the approximations can be constructed using only first-order information of the neural network function, in a stochastic fashion, while exploiting the overall structure of the learning problem for a faster convergence. We discuss several use cases, based on different choices for the loss function (e.g., squared loss and cross-entropy loss), and for the regularization of the NN’s weights. We experiment on several medium-sized benchmark problems, and on a large-scale dataset involving simulated physical data. The results show how the algorithm outperforms state-of-the-art techniques, providing faster convergence to a better minimum. Additionally, we show how the algorithm can be easily parallelized over multiple computational units without hindering its performance. In particular, each computational unit can optimize a tailored surrogate function defined on a randomly assigned subset of the input variables, whose dimension can be selected depending entirely on the available computational power.
منابع مشابه
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds
Adaptive gradient methods have become recently very popular, in particular as they have been shown to be useful in the training of deep neural networks. In this paper we have analyzed RMSProp, originally proposed for the training of deep neural networks, in the context of online convex optimization and show √ T -type regret bounds. Moreover, we propose two variants SC-Adagrad and SC-RMSProp for...
متن کاملConvergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks
By lifting the ReLU function into a higher dimensional space, we develop a smooth multi-convex formulation for training feed-forward deep neural networks (DNNs). This allows us to develop a block coordinate descent (BCD) training algorithm consisting of a sequence of numerically well-behaved convex optimizations. Using ideas from proximal point methods in convex analysis, we prove that this BCD...
متن کاملQualitatively characterizing neural network optimization problems
Training neural networks involves solving large-scale non-convex optimization problems. This task has long been believed to be extremely difficult, with fear of local minima and other obstacles motivating a variety of schemes to improve optimization, such as unsupervised pretraining. However, modern neural networks are able to achieve negligible training error on complex tasks, using only direc...
متن کاملپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.04769 شماره
صفحات -
تاریخ انتشار 2017